HOM Evaluation Status 10/10/00 Ron Sundelin

- Principal Participants
 - Sang-ho Kim
 - Dong-o Jeon
 - Marc Doleans
 - Jacek Sekutowicz
- Determination of mode properties
 - Jacek determined R/Q of 0, 1 pole modes, beta 0.61
 - Sang-ho determined R/Q of 0, 1, 2, 3 pole modes, betas 0.61, 0.81
 - Including relative energies in each end cell
 - Looks for trapped modes
 - Analyzing effects of mechanical deviations from nominal
 - Can trap nominally untrapped modes
- Relationship between actual cavity properties and calculated properties
 - Frequency spreads reduce beam dynamics problems
 - Lowest frequency spread on stamped cup, beam welded cavities
 - Provides most conservative estimate
 - Result from Cornell study with tuned fundamental mode
 - $\sigma = 0.00109 * |f f_0|$

- Differences between measured centroids and calculations
 - Important for determining whether or not mode can land on beam spectral line
 - HOMs
 - ± 0.00376 maximum fractional error from Cornell study
 - Use ± 0.008 maximum for SNS in case error is larger
 - Other fundamental passband modes
 - $|((f_{meas} f_{calc})/(f_{calc})) / ((f_{pi} f_{mode})/(f_{pi}))| \le 0.027$
 - From Cornell study
 - Use 2.5 X this for SNS in case error is larger
- Beam interactions with cavity four important cases
 - Transverse, not on major beam spectral line
 - Existence of potential instability at an arbitrary HOM frequency confirmed, quasi-exponential growth
 - Selected highest R/Q transverse mode
 - With no frequency spread, required Q ≤ 8.64 * 10**5
 - With 0.2 X expected frequency spread, required Q ≤ 1.27 * 10**9
 - Lowest Q found with 80 Monte Carlo seeds
 - All identified beta = 0.61 modes have been explored
 - No instabilities with Q ≤ 10**8, 0.2 X expected frequency spread
 - Beta = 0.81 modes remain to be explored
 - Transverse, near major beam spectral line
 - Case previously evaluated by Jeon
 - Results in time-dependent magnification of beam steering error
 - Frequency spreads and reduced Qs lower magnification
 - All identified beta = 0.61 modes have been explored
 - No measurable magnifications with Q ≤ 10**8, 0.2 X expected

frequency spread

- Beta = 0.81 modes remain to be explored
- Longitudinal, not on major beam spectral line
 - Existence of potential instability at an arbitrary HOM frequency confirmed, quasi-exponential growth
 - Growth more limited than transverse case because of non-linear relativistic effects
 - Simulation uses linearized RF restoring force
 - All identified beta = 0.61 modes have been partially explored
 - No instabilities with Q ≤ 10**6, 0.2 X expected frequency spread
 - Beta = 0.81 modes remain to be explored
- Longitudinal, near major beam spectral line
 - Case being evaluated by Sang-ho, Ron
 - Results in time-dependent beam energy and timing error
 - Frequency spreads and reduced Qs reduce effect
 - Can result in substantial production of HOM power (related to first effect)
 - Frequency spreads can reduce likelihood of hitting beam spectral line
 - Simulation returns cavity with smallest number of standard deviations from nominal frequency to nominal frequency
 - Reduced Qs can lower amount of power produced
 - This effect will require the use of HOM couplers
 - Initial investigation of all beta = 0.61 cavities has been performed
 - Q = 10**6 for all modes
 - Modes 31, 32, and 36 can produce substantial HOM power
 - These modes are "snapped" to microbunch harmonic
 - Other HOMs are "snapped" to notch harmonic

- Inconvenient but manageable
- Q = expected values for fundamental passband modes
- $5 \pi / 6$ mode presents a major problem
 - This mode is snapped to a 60 Hz harmonic, not a notch harmonic
 - Large energy error growth
 - Substantial total amount of HOM power generated
 - Appears to be driven by general proximity to a beam harmonic
 - Possibly compounded by general proximity to notch harmonic
 - Not controlled by 0.2 X expected frequency spread
 - How should this be addressed?
 - Finish checking simulation code for errors
 - Continue using simulation code to understand cause and possible cures
 - Feedback via main klystron (bandwidth sufficient?)?
 - Preferential extraction of this mode?